Promising new treatment for uncontrolled asthma

Asthma before-after
Asthma before-after (Photo credit: Wikipedia)

Your body produces nitric oxide (NO) as a way to fight inflammation, relax tight muscles and increase blood flow. High levels of exhaled nitric oxide in your breath can mean that your airways are inflamed — one sign of asthma.

Researchers have recently discovered a substance called anti-thymic stromal lymphopoietin (TSLP) that seems to aggravate inflammation and trigger response to allergens in adults with allergic asthma.

In  a small double-blind study asthma patients treated with AMG-157 (Amgen) over nearly a 3-month period reacted significantly less to asthmatic challenges than those not treated. Amgen is a human monoclonal antibody that inhibits TSLP activity by binding to it.

Study results reported  adults with allergic asthma were shown to have “reduced the fraction of exhaled nitric oxide and blood and sputum eosinophils,” both of which are markers for airway inflammation. Dramatic promise for patients whose asthma is not well-controlled by other means.

Exhaled NO shows e-cigarettes too good to be true

CIGARETTE
CIGARETTE (Photo credit: Fried Dough)

As an ex-smoker I was intrigued when I heard about the new “smokeless” cigarette as an alternative to the devastatingly addictive habit of tobacco smoking. I wondered if it was truly possible to essentially hang on to your habit and not suffer the consequences.

Recent research says definitively not.

Italian researchers tested a small group of subjects for rates of exhaled nitric oxide (NO) – considered to be an accurate gauge of whether airways are inflamed – and found that e-smokers’ lungs were just as short on exhaled NO as those of tobacco smokers’. In fact, there were indications that nicotine-laced e-cigarettes actually deposited more particles in the lungs than real cigarette smoke.

So, unlike using methadone for stabilizing people with addictions, the e-cure could be turning out to be worse than what it’s replacing.

Stem cells help heart attack & heart failure

English: Human bone marrow.
English: Human bone marrow. (Photo credit: Wikipedia)

Imagine a substance your doctor could inject directly into your heart soon after you have a heart attack that will prevent and/or repair some of the damage that heart attacks usually involve? AND thus possibly prevent you from  developing heart failure as a result of the attack?

Yep. They’ve done it in a recent study with 40 patients in Japan – half got a protein drip called G-CSF and the rest a saline solution (placebo).

…researchers from the Gunma Prefectural Cardiovascular Center in Maebashi, Japan, have found that a protein called G-CSF—when injected into the hearts of patients who recently suffered an attack—can actually spur a type of bone marrow stem cells to migrate to the heart and curb the spread of cellular death that normally takes place.

Clinical trials are in the works to confirm these dramatic preliminary promises.

Baby teeth – new source for stem cells

Tooth-Care
Tooth-Care (Photo credit: Lutz-R. Frank)

Researchers have recently found they can create stem cells taken non-invasively from tissues found in teeth. “These stem cells can be isolated and grown under defined tissue culture conditions, and are potential cells for use in tissue engineering, including, dental tissue, nerves and bone regeneration.”

This press release mentions a concern that people might start yanking their kids’ teeth out for money. I guess you have to mention the weird fears when you put out information about a new discovery. But happily, no scary dental visit is needed. The manufacturer rushes to point out that its method will preserve a baby tooth that fell out all by itself for up to 5 days. That gives you plenty of time to get it to a lab while the blood-flowing parts are still operating.

Bravo! Scientists continue to discover new ways to use nature’s own approaches to healing. What a great time to be alive.

And I’m going to bet the tooth fairy may have to up her game a bit on this one…

All things nitric oxide – research report released

Nitric Oxide Synthase
Nitric Oxide Synthase (Photo credit: Wikipedia)

If you’ve read even a few of the posts on BioMedNews.org, you probably know I love writing about research that involves nitric oxide (NO). I was introduced to the power of NO about ten years ago when I wrote a white paper on asthma research for the Lerner Research Institute at the Cleveland Clinic. In fact, that project was the reason I started this blog – I got hooked on bioscience.

Just found out that Research and Markets, a global organization dedicated to examining the state of research, the condition of markets, and the companies working to develop various therapies, has recently released a comprehensive report about the current global state of research on nitric oxide (NO) and a related enzyme called nitric oxide synthase (NOS).

The description of this report is the simplest explanation I’ve seen of the dual nature of NO – how it produces great good in the human body, and yet can cause health problems in the same areas where it’s done good. A strange and wonderful molecule to learn about.

 

 

Enhanced by Zemanta

Harvard stem cell study promises personalized treatments

Personalized Medicine
Personalized Medicine (Photo credit: Wikipedia)

Scientists have for some time been able to reproduce pieces of human organs on chips. Now in a new study they’ve been able to use a patient’s stem cells to reproduce in the lab chunks of functioning tissue from a human being with a specific disease.

In this case, a team of experts from multiple disciplines “modeled the cardiovascular disease Barth syndrome, a rare X-linked cardiac disorder caused by mutation of a single gene called Tafazzin, or TAZ. The disorder, which is currently untreatable, primarily appears in boys, and is associated with a number of symptoms affecting heart and skeletal muscle function.”

The disease in this case results in very weak contractions of the heart muscle. The hope is that they may also eventually be able to model functioning tissue from patients with other diseases that produce other functional problems.

Why would they want to create functioning yet diseased human tissue outside a human being? The answer is that they can then experiment with and test all kinds of drugs and other treatments that they might not want to use directly on an actual living, breathing human being. In this scenario they were able to inject a genetic product that corrected the contractile problem right there in the lab.

While the article doesn’t say this, I’m thinking it could also mean in the long run fewer animals used for experimentation. And it could lead to shorter times before promising therapies can get to clinical trials.

A brave new world, indeed.

 

Enhanced by Zemanta

Stem cells from fat used to regenerate bone

English: Fat Stem Cells
English: Fat Stem Cells (Photo credit: Wikipedia)

Bone injuries and osteoporosis have long been the target of research for better treatments. Now a team of California researchers has discovered a way to use stem cells from fat tissue to regenerate bone.

The new approach overcomes some of the major obstacles of using regular mesenchymal stromal stem cells (MSC). MSCs require a two- to three-week period of culturing outside the body, which introduces greater possibility of infection and increases the risk of cancer cells developing before the stem cells can be used.

The new method of harvesting and purifying stem cells from adipose tissue produces what are known as perivascular stem cells (PSC). PSCs are localized around all the body’s veins and arteries and form part of the natural regenerative system. At the same time researchers identified a new growth factor NELL-1 that “potently amplifies the ability of PSC to form bone and vascular structures.”

Applications for the new method include treating bone loss due both to post-menopause in women and to aging in both men and women.

Can’t wait to see this get to clinical trial.

Enhanced by Zemanta

Embryonic stem cells made from human skin

English: Embryonic Stem Cells. (A) shows hESCs...
English: Embryonic Stem Cells. (A) shows hESCs. (B) shows neurons derived from hESCs. (Photo credit: Wikipedia)

Scientists have come up with a new technique for using not just infant stem cells but also stem cells from older adults’ skin to develop treatments for many diseases. They pursued this angle because older adults’ DNA is more suitable to addressing conditions that tend to develop more frequently in older people such as diabetes, arthritis, and so on.

Good to see that the researchers have finally, after many years. found a way to create “embryonic” – meaning able to turn into any other type of human cells (plenipotent as opposed to multipotent) – stem cells without the controversial approach of taking them from discarded human embryos. Good news on all fronts.

This new approach could lead to building a genetic library of stem cells made from strong DNA. It could also be used to draw a patient’s own DNA to develop a patient-specific treatment, though this would be much more expensive than choosing from a library.

Imagine. Alleviating the pain, disability, disfigurement and suffering of diabetes. And arthritis.

For anyone facing the prospect of undergoing the current brutal approaches to joint replacement, according to research at Johns Hopkins,  the idea of using stem cells to grow new cartilage, which sounds like the proverbial miracle, may not be that far away.

Enhanced by Zemanta

New guidelines suggest fewer blood pressure meds – and the fight is on

A multidisciplinary panel of medical experts agreed recently to raise the blood pressure limits for people over 60 and people with kidney disease. Instead of 140/90 the new top limit is 150/90 for people over 60.  For people with diabetes or kidney disease it’s changed from 130/80 to 140/90. The result is your doctor has more leeway for diagnosing you as an individual.

Yes, it says raise the limit. Shocking, eh? The trend, as seen so clearly with the cholesterol meds, has been to keep lowering the “desired” limit – and thus end up forcing more and more people to take medications. Wonder what happened here?

English: A jar for keeping medical leeches, on...
English: A jar for keeping medical leeches, on display in Bedford Museum. (Photo credit: Wikipedia)

But, hey, the fight is not over. Five of the panel’s 20 experts dissented. That is, they disagreed with the majority, just as happens with our Supreme Court. Only the thing is, when judges dissent, the majority decision becomes law anyway. That doesn’t happen in medicine.

Rather than the majority ruling settling the issue in the medical world, the opinions of the minority nay-sayers become the news story instead. Witness the article in the March, 2014 issue of the AARP Bulletin. It focuses on the dire warnings of the dissenters who claim that changing the guidelines will nullify the advances that have occurred in lowering risks.

The result is that patients have little clarity about where they really stand. Which is why it is so very important to find a doctor you respect, who sees you as an individual human being and who respects you for your own “medical mind.”  (see my other posts on using your medical mind).

Just remember. At one time doctors were certain that applying leeches to the patient’s skin was a cure for sickness. And – unlike the occasional pharmaceutical purveyor – the leeches weren’t offering any incentives for the doctors to use them.

Enhanced by Zemanta

New nitric oxide component (HNO) promises new CV help

English: A schematic showing the (laboratory) ...
English: A schematic showing the (laboratory) production of nitric oxide. The setup was made based on an image of the 1949 Popular Mechanics article by Kenneth M. Swezey (titled: The gas that makes you laugh). Images from http://commons.wikimedia.org/wiki/User:Rocket000/SVGs/Chemistry were used to make this image. (Photo credit: Wikipedia)

The substance nitric oxide (NO), one of my favorite topics, is now known to be break-downable into components, one of which has one less electron. It’s known as NO(-) or HNO or nitroxyl, and researchers are finding some exciting new applications for it.

One novel use for nitroxyl is as part of a nanoparticle coating for implanted medical devices that otherwise might trigger dangerous blood clots. The coating is made up of sheets of graphene integrated with two components—haemin and glucose oxidase. “Both work synergistically to catalyze the production of nitroxyl, which can be used inside the blood like nitric oxide, although it contains one less electron. Nitroxyl has been reported as being analogous to nitric oxide in its clot-preventing capability.”

The other use for nitroxyl (HNO) involves its use in treating heart failure. Researchers normally write in very reserved terms about their discoveries, but the author of the passage below seems pretty excited about  the implications of the research. Basically it’s saying that HNO donors can do things that regular NO donors cannot do and may be dramatically more useful in treating cardiovascular disease.

Thus, unlike NO*, HNO can target cardiac sarcoplasmic ryanodine receptors to increase myocardial contractility, can interact directly with thiols and is resistant to both scavenging by superoxide (*O2-) and tolerance development. HNO donors are protective in the setting of heart failure in which NO donors have minimal impact.

It’s cool to see this showing three of my favorite topics coming together: nitric oxide, nanotechnology and heart failure. But then, when all is said and done someday, everything in bioscience will undoubtedly coalesce in one way or another.

Enhanced by Zemanta

Looking at how bioscience news affects business, higher education, government – and you and me